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Results 
The accuracy and precision for global PGI range 
verification (averaging over multiple spots) was 
determined to be 0.7 mm (2σ) and 1.3 mm (2σ), 
respectively. The precision is limited by remaining 
uncertainties in image registration and positioning 
reproducibility (1.1 mm, 2σ). Hence, the absolute 
verification uncertainty of the cumulative mean shift (for 
9 monitored fractions) is 0.8 mm (2σ), which is smaller 
than the range prediction uncertainty for deep-seated 
tumors (about 10 mm for prostate treatments). 
The comparison of the PGI-measured and predicted spot-
wise ranges for in total 12000 PBS spots from the 9 
analyzed fractions resulted in an range prediction offset of 
0.6 mm, 1.3 mm and 4.4 mm, for the DirectSPR, Adapt-
HLUT and Std-HLUT approaches, respectively. 
 

 
 
Conclusion 
The accuracy of PGI-based range verification was improved 
to enable the worldwide first in-man validation of CT-
based stopping-power prediction. The evaluation of the 
first clinical PGI data for prostate-cancer treatments, 
systematically acquired within a clinical study, confirms 
the superiority of DECT-based range prediction in patients. 
 
OC-0699  Relative biological effectiveness in proton 
therapy: accounting for variability and uncertainties 
J. Ödén1,2, K. Eriksson2, E. Traneus2, A. Dasu3, P. Witt 
Nyström3,4, I. Toma-Dasu1,5 

1Stockholm University, Medical Radiation Physics, 
Stockholm, Sweden ; 2RaySearch Laboratories AB, 
Research, Stockholm, Sweden ; 3The Skandion Clinic, 
Radiation Oncology, Uppsala, Sweden ; 4Danish Centre 
for Particle Therapy, Radiation Oncology, Aarhus, 
Denmark ; 5Karolinska Institutet, Department of 
Oncology and Pathology, Stockholm, Sweden  
 
Purpose or Objective 
The increased relative biological effectiveness (RBE) at the 
end of the proton range might increase the risk of 
radiation-induced toxicities. This, however, is not 
accounted for in clinical practice when using the constant 
RBE of 1.1. This study aims to quantify the impact of 
variable RBE models with uncertainties in the plan 
evaluation and to apply indirect RBE optimisation for 
mitigating the potential clinical consequences. 
Material and Methods 
Proton plans with various fractionation doses for breast, 
brain, H&N and prostate cases (optimised with RBE=1.1) 
were evaluated using several LETd- and α/β-dependent 
RBE models. Resulting distributions of the RBE-weighted 
dose (DRBE) and LETd were analysed together with NTCPs. 
Furthermore, robustness evaluations accounting for 
uncertainties in setup, density, RBE model parameters, 
LETd and α/β were performed. Subsequently, two indirect 
RBE optimization methods were applied: (1) Re-optimising 
the physical dose based on variable RBE predictions from 
the LETd distribution (LETd-based re-optimisation). (2) 
Reducing the DRBE in OARs while maintaining the physical 
target dose by penalising protons stopping in OARs (proton 
track-end optimisation). Reducing the number of track-
ends is an appropriate surrogate for LETd and RBE 
reduction, as both increase rapidly at the end of range.  
Results 
For CTVs with α/β≈5-15 Gy, the DRBE using variable RBE 
models was predicted to be similar to RBE=1.1 (average 
RBE of 1.05–1.15 for brain/H&N), whereas it was predicted 
to be higher for targets with α/β≈1-5 Gy (average RBE of 
1.1–1.3 for breast/prostate). For most OARs, the predicted 
DRBE was often substantially higher, resulting in higher 
NTCPs. Inclusion of RBE uncertainties generally broadened 
the error bands for the nominal DVHs, with the largest 
contribution from the α/β uncertainty. The LETd-based re-
optimisation allowed for satisfying target coverage for 
several variable RBE models and treatment sites. For 
prostate and breast cases, robust plans fulfilling clinical 
target and OAR goals were generated. Proton track-end 
optimisation allowed for substantial reductions in DRBE, 
LETd, and NTCP for several OARs compared to only dose-
based optimisation, without compromising target coverage 
or the integral dose. For brain lesions, LETd reduction of 
50% or more could be achieved, resulting in fulfilment of 
clinical OAR goals assuming variable RBE models where 
dose optimised plans failed.  
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Conclusion 
Robustness evaluation including RBE uncertainties allows 
for comprehensive analyses where potential adverse 
effects could be evaluated and mitigated on quantitative 
individual bases. LETd-based re-optimisation could be used 
as a pragmatic solution for prostate and breast cases to 
fulfil clinical goals assuming variable RBE models, whereas 
proton track-end optimisation might be a generalised 
indirect RBE optimisation tool that could produce 
biologically advantageous plans compared to dose-
optimised plans, without compromising physical criteria in 
current treatment protocols. 
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Purpose or Objective 
Robust optimization has shown to be essential in order to 
ensure an acceptable level of robustness in IMPT treatment 
plans (especially for lung tumor cases). However, the 
inherently excessive computational burden of the 
algorithm limits its use in the clinical environment. In this 
study, we propose an approximate worst-case robust 
optimization algorithm that significantly accelerates the 
optimization process, without compromising plan quality. 
Material and Methods 
Uncertainties due to setup errors, range errors and 
respiratory motion (characterized by a 4D-CT) are 
considered. In conventional worst-case robust 
optimization, the effects of the above-mentioned 
uncertainties are usually modeled by simulating a set of 63 
scenarios (= 7 setup error scenarios x 3 range error 
scenarios x 3 breathing phases), and evaluating their 
corresponding dose at each iteration during optimization. 
The proposed method differs from conventional robust 
optimization by decomposing the original scenario set into 
(1) a dynamically updated ‘active pool’ of 10 candidate-
worst scenarios and (2) a ‘dead pool’ that contains the 53 
left-over scenarios. Because only the scenarios in the 
active pool are evaluated, a significant gain of 
optimization time is expected. The active pool scenarios 
are selected using a hidden probability vector P, which 
associates with each scenario, at all times, a ‘worst-case 
probability’. P is updated at each iteration as follows: (1) 
the probability of the worst-case scenario is incremented, 
(2) the probabilities of the dead scenarios are incremented 
(giving them the possibility to contribute later on in the 
optimization) and (3) P is normalized so that the sum of all 
elements in P is 1 (effectively decrementing the 
probabilities of active scenarios which are currently not 
the worst-case). At all times, the 10 scenarios with the 
highest probabilities are selected in the active pool. 
The proposed method was implemented in the open-
source robust optimizer MIROpt and tested for a 4D lung 
tumor patient (prescription of 60 Gy). The resulting 
treatment plan was benchmarked to a plan obtained from 
conventional worst-case robust optimization (using 63 
scenarios). Treatment plans were evaluated by performing 
robustness tests (simulating breathing motion, setup and 
range errors) using the open-source Monte-Carlo dose 
engine MCsquare. 
Results 
An 80% reduction of plan optimization time is achieved by 
the proposed method. In terms of plan quality (see figure), 
the proposed method and conventional method perform 
similarly: both achieve a worst-case D95 of 58.5 Gy. 
Moreover, the difference in normal tissue sparing is also 
comparable (the difference in lung Dmean is only 0.5 Gy). 
Conclusion 
An approximate worst-case robust optimization method is 
proposed that achieves an optimization time gain of 80%, 
for the patient considered in this study, with similar 
performance compared to conventional worst-case robust 
optimization. 




